
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1542 May, 1995

Three Cuts for Accelerated Interval
Propagation

D. McAllester
MIT AI Lab

Technology Square, 545
Cambridge, USA
damQai.mit.edu

P. Van Hentenryck
Brown University

Box 1910
Providence, RI 02912
pvhQcs.brown.edu

D. Kapur
SUNY at Albany

Dep. of Computer Science
Albany, NY-12222

kapurQcs.albany.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we describe
a system called Newton which finds roots of systems of nonlinear equations using refinements of interval
methods. The refinements are inspired by AI constraint propagation techniques. Newton is competitive
with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for
continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical
ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which,
we believe, makes the theoretical content of our work more apparent. Any implementation will need to
adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.

Copyright © Massachusetts Institute of Technology, 1995

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's artificial intelligence research was provided in part by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contract N00014-91-J-4038. This research was also partly supported
by the Office of Naval Research under grant N00014-91- J-4052 ARPA order 8225, the National Science Foundation under grant
numbers CCR-9357704, an NSF National Young Investigator Award.

a
D

19950901 056
Availability Codes

Avail and/or
Special

1 Introduction

In this paper we address the problem of finding solutions
to large systems of nonlinear equations. This is an old
problem with many applications and a large literature.
In engineering applications it is generally sufficient to
find a floating point value for each variable such that the
given equations are satisfied up to the accuracy of float-
ing point computations. The problem of determining
whether such a floating point solution exists is NP com-
plete. Our work emphasizes refinements of constraint
propagation techniques for NP complete problems that
have been developed in the AI and logic programming
communities [1, 2, 3].

In an earlier paper we describe an implemented sys-
tem called Newton [4]. Newton uses a branch and prop-
agate algorithm whose propagation phase manipulates
upper and lower bounds on the variables appearing in the
given equations. Algorithms which manipulate upper
and lower bounds are called interval methods — Newton
is based on interval methods [5]. A well-studied alter-
native to interval methods is the so-called "continuation
method" or "homotopy technique" [6]. Table 1 summa-
rizes our previously published results comparing Newton
with earlier interval based systems and with continuation
methods.1 The benchmarks were taken from papers on
numerical analysis [12], interval analysis [8, 9, 11], and
continuation methods [14, 6, 13, 10]. The table shows
that Newton outperforms an earlier interval based sys-
tem and is competitive with continuation methods on
the benchmarks tried. The novelty of Newton resides
in the use of bound propagation techniques which are
stronger than those used in previous interval systems.
Newton can solve a variety of problems for which con-
tinuation methods are infeasible (those benchmarks with
total degree greater than, say, 240).

Our earlier paper on Newton describes the algorithm
used in sufficient detail to allow replication of the empiri-
cal results [4]. This includes a detailed description of the
heuristics used. The details tend to obscure what we feel
are the essential technical ideas behind the algorithms.
In this paper we give an abstract presentation of three

1The Newton system was run on a Sun Sparc 10 work-
station to obtain all solutions to each benchmark system of
equations. The column labeled Newton gives the run time (in
seconds) of the newton system on a given benchmark prob-
lem. The column labeled HRB gives timings for a traditional
interval method using Hansen-Segupta's operator, range test-
ing, and branching. This method uses the same implemen-
tation technology as ours, C code running on a SPARC 10.
Some interval methods such as [7] have better convergence
properties near solutions. Our main contribution aims at
speeding up the computation when far from a solution and
hence comparing it to HRB is meaningful. The column labeled
CONT gives timings for a state of the art continuation method
[14] running on a DEC 5000/200 which is perhaps slightly
slower than a SPARC 10. For each benchmark, we give the
number of variables (n), the total degree of the system (d),
the initial range for the variables, and the run time of each
system in seconds. A space in a column means that the re-
sult is not available for the method. A question mark means
that the method does not terminate in a reasonable time (>
1 hour). Further details on these timings can be found in [4].

Prob, i v d range Newt HRB CONT |

Broy 10 3 io
[-1.1] 1.6 18.2 '

Broy 20 320
[-1,1] 4.2 7

Broy 320 3320
[-1,1] 113.7 ?

Broy 320 ,320 [—10s. 108] 143.4 9

MC 20 320 [-4,5] 24.5 968.2
MC 40 340 [-4,5] 192.8 ■?

MC 80 38O [-4,5] 1752.6 7

MC 80 380 [-108,0] 1735.1 7

il 10 3io [-2,2] 0.1 14.3
i2 20 320 [-1,2] 0.3 1821.2
i3 20 320 [-2,2] 0.3 5640.8
i4 10 6io

[-1,1] 73.9 445.3
i5 10 ll10

[-1,1] 0.1 33.6
kinl 12 4608 [—108,108] 14.2 1630.1
kin 2 8 256 [-108,108] 353.1 4730.3 35.6
eco 4 18 [-108, 108] 0.6 1.1
eco 5 54 [-108,108] 3.4 5.9
eco 6 162 [-108,108] 22.5 50.2
eco 7 486 [—108,108] 127.6 991.4
eco 8 1458 [-108,108] 915.2
eco 9 4374 [-108,108] 8600.3
comb 10 96 [-108,108] 9.9 57.4
chem 5 108 [0,108] 6.3 56.6
neuro 6 1024 [-10,10] 0.9 5.0
neuro 6 1024 [—103,103] 172.7 5.0

Table 1: Summary of the Experimental Results

"cuts" where each cut specifies a way of inferring a new
upper or lower bound on a variable. These abstract cuts,
while insufficient in themselves to allow exact replication
of our results, seem to capture the essence of Newton's
ability to prune the search space and a description of
the cuts should allow others to replicate the qualitative
performance of the Newton system.

The heart of Newton's algorithm is a propagation pro-
cess which iteratively improves known bounds on vari-
ables using a set of inference rules we call interval cuts.
An interval cut is a method of inferring an inequality
of the form x < b or x > b where 6 is a floating point
number. The next section specifies three abstract cuts
used in the Newton system. Section 3 briefly outlines
how these cuts can be used in a branch and propagate
procedure for findings all roots of a system of nonlinear
equations. Section 3 is a simplification of the algorithm
actually used in Newton.

2 Three Cuts
In order to define our cuts some preliminary terminol-
ogy is needed. Our algorithms work with floating point
numbers which we assume to be a finite set of ratio-
nal numbers extended with both a positive and nega-
tive infinity, denoted +oo and -co respectively. We
will generally use the term "interval" to refer a closed
interval of the form [a, b] where a and b are floating
point numbers. Our algorithms also work with symbolic
expressions constructed from floating point constants,
symbolic variables, addition, subtraction, multiplication,
and "power expressions" of the form e" where e is an
expression and n is a positive integer constant. Power

expressions improve the accuracy of interval evaluation.
We will generally use the term "expression" to refer to
symbolic expressions of this form. We will use the term
"box" to refer to an assignment of intervals to symbolic
variables. For box B and variable x we write B(x) to de-
note the interval assigned to x in the box B. A "point"
is an assignment of particular floating point numbers to
each variable. Clearly, if we are working with n variables
then a box is a rectilinear subset of Rn. We allow B(x)
to be interval of the form [a, a]. A point can be viewed
as a box in which all intervals are of this form.

All interval methods are based on interval evalua-
tion — an evaluation process which computes an inter-
val value for an expression from given intervals for the
variables it contains. The most straightforward interval
evaluation method is obtained by associating each of the
operations of addition, subtraction, multiplication, and
powers with a corresponding operation from intervals to
intervals. More specifically we have the following opera-
tions on intervals.

[a, b] + [c, d] = [a + c, b + d]

[a, b] — [c, d] — [a — d, b — c]

[a, b] * [c, d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)]

n odd
n even; 0 € [a, b] [a, b]" = < [0.max(an, b")]

{ [mtn(an,bn), max(a",bn)] n even; 0 £ [a, 6]

We use the notation NE(e, B) to denote the inter-
val value of an expression e when variables are assigned
the interval values given in B and operations are inter-
preted as operations on intervals according to the above
rules (NE stands for "natural evaluation"). For exam-
ple if B(x) is [-1, 1] then NE(x + x, B) is the inter-
val [-2, 2]: NE(x*x, B) is the interval [-1, 1]; but
NE(x2, B) is [0, 1]. For most nontrivial expressions
the interval NE(e, B) is larger than the actual range of
values of e over points in B. If B{x) is [—1, 1] we have
that XE(x~ — x. B) is [—1. 2] while the actual range of
values in this box is [—1/4, 2]. In our implementation
outward rounding is used in the above rules — in arith-
metic for computing lower bounds we round down and
in arithmetic for computing upper bounds we round up.
This provides a guarantee that NE(e, B) contains the
actual range of values of e independent of numerical er-
rors. This guarantee is often expressed as the statement
that interval evaluation is "conservative".

We will assume a given set of constraints of the form
e < 0 where e is an expression as defined above. An
equation ei = ei can obviously be represented with two
constraints of the form t\ — 62 < 0 and e^ — e\ < 0. For
technical reasons it will be easier to work with inequali-
ties.

An interval cut is a procedure which operates on a
set of constraints and a current box. An interval cut
reduces the given box by deriving a new bound on one
of the variables. Cuts are presented below as nondeter-
ministic procedures — performing a cut often involves
guessing one or more values. In practice these guesses
are generated by deterministic heuristic methods such
as those described in section 3. A nondeterministic cut

NE(e. B[x:=[c'.c'D)

Line of slope Du Line of Slope Dl

c' - s/Du

Figure 1: A Newton cut deriving x < c' — ■£-

procedure can also be viewed as an inference rule for de-
riving new bounds independent of heuristic methods for
finding useful inferences.

2.1 Newton Cuts

A Newton cut is represented schematically in figure 1.
The notation used in the figure is defined rigorously in
the following description. In the Newton cut, and in
later cuts, we abuse notation and use de/dx to denote
the expression that is the symbolic derivative of e with
respect to x.

Newton Cut: Let e < 0 be a constraint, B a
given box, x a variable appearing in e, and let
[a, b] be the interval B(x). Let c and c' be
two cut values such that c < 6 and c' in [c, b].
Let s be the lower bound of NE(e, B[x :=
[c',c'}]). We require s > 0. Let [Du Du) be
the interval NE(de/dx, B[x := [c, 6]]). To
ensure there is no solution with x £[c', b] we
require that either D\ > 0 or Di < 0 and
c' — -ß- > b. If Du < 0 we can infer x < c and

if Du > 0 we can infer x < maxic, c' — -£-)■

The lines of slope Du and Di in the figure 1 represent
the fastest possible rate of descent of the value of the
expression e as a function of x based on the interval eval-
uation of the derivative de/dx. It should be clear that
all values of x inside the triangle defined by these lines
must violate the constraint e < 0 and can be pruned.

An interesting special case is when c = a and c' = b.
Whenever the lower bound of NE(e. B[x := 6,6]]) is
greater than zero the upper bound 6 can be ruled out as
a value of x. If we are working with a finite box, i.e.,
one where all variable intervals are finite, and ignoring
roundoff errors, Du must be finite and the choice of c = a
and c' = 6 always achieves some reduction of the upper
bound. However, larger cuts are usually achieved by
other choices of c and c'. Increasing the value of c reduces
the size of the interval [c, 6] and hence reduces the range
of possible derivative values NE(de/dx, B[x := [c, 6]]).
This often gives a smaller value for Du and hence a larger
cut.

Decreasing the value of c' away from 6 can also give
a larger cut. As in the statement of the cut, let s(c') be

the lower bound of NE(e, B[x := [c . c']]). as a function
of c'. In practice a reduction in the upper bound can
only be achieved when s(b) > 0. i.e.. the value b can be
ruled out. As c' is reduced from b. the lower bound s(c')
will also typically be reduced. However, it typically falls
more slowly than Du, which is the largest possible value
of de/dx in the interval [c, 6]. If ds/dc' is smaller than
D.d then reducing c' away from b will result in a larger
cut. However if we reduce c' too aggressively then the cut
may fail altogether either because we fail to get s(c') > 0
or we fail to rule out feasible points with x € [c', b].

The above cut allows for the reduction of upper
bounds. We call it an upper bound cut. Every upper
bound cut has a dual lower bound cut. We will only
present upper bound cuts.

2.2 Snake Cuts

Consider a given constraint e < 0. a given variable x
appearing in the constraint, a given box B, and let [a, b]
be the interval B(x). Now consider a value c' in the
interval [a, b] and consider the lower bound s of the
interval NE(e, B[x := [c',c']]) as a function of c'. We
will write s(c') to express s as a function of c' for fixed
values of e and B. The snake cut is identical to the
Newton cut except that de/dx is replaced by ds/dc'.2

It turns out that the range of values of ds/dc1 over the
interval [c, 6] is often significantly less than the range of
possible values of values of de/dx. This fact allows cuts
to be larger.

In order to replace de/dx by ds/dc1 we need to first
represent the function s(c') as a symbolic expression s(x)
involving only the variable x. To do this we first sym-
bolically rewrite e as a polynomial P(x) of the form
so + S\x + S2X2 + ... + snx

n where each coefficient s,
is an expression not involving x. We then define two
polynomials in x, P~(x) and P+{x), each of which has
constant coefficients (and hence no variables other than
x). P~{x) gives a lower bound on e for negative values of
x and P+{x) gives a lower bound on e for positive values
of x. For odd powers of x the coefficients of P~(x) are
taken to be the upper bound of NE(s{, B) where se- is
the corresponding symbolic coefficient of the polynomial
P(x). In all other cases the coefficients of P~(x) and
P+(x) are taken to be the lower bound of NE{si, B).
A function s{x) can now be represented symbolically by
the conditional expression if(x > 0. P+(x), P~(x))
which has the property that it equals P+(x) for posi-
tive values of x and P~(x) for other values of x. The
interval evaluation function NE and the symbolic differ-
entiation operators can be easily extended to handle con-
ditional expressions. The symbolic expression s(x) does
not correspond exactly to the function s(c') as defined
above because rewriting an expression as a polynomial
in x changes the interval returned by interval evaluation.
However, the symbolic expression s(x) does give a valid
lower bound on the values of e for points in the box B
as a function of the value for x.

2 In informal discussions we began calling the function
s(c') a "snake" and the cut based on an analysis of this func-
tion became known as the snake cut.

Snake Cut: Let e < 0, x, B, [a, b] and the
symbolic expression s(x) be defined as above.
Let c and c' be two additional parameters as
in the Newton cut with c < b and c' in [c,b].
We require that s(c') > 0. Let [Du Du] be
the interval NE{ds/dx, B[x :- [c, &]]). To
ensure there is no solution with x £ [c1, b] we
require that either D\ > 0 or D\ < 0 and
c' - 25- > b. If Du < 0 we can infer x < c and

if Du > 0 we can infer x < max(c, c' — ■£-).

To see the advantage of the snake cut over the Newton
cut consider the expression zx - 2< 0 where the box B
assigns both x and z the interval [1, 4]. It is not difficult
to see that since z is in [1, 4] and zx < 2 we have x < 2.
We compare a Newton cut with a snake cut where we
take c = 1 and c' = 4 in both cuts (i.e., c = a and
c' = b). In the Newton cut we have that NE(de/dx, B)
equals NE(z, B) which is [1, 4]. So the infered bound
isar<4 — | = 3|. However the lower bound polynomial
s(x) (for positive values of x) is a;-2. So NE(ds/dx, B)
equals NE(l, B) equals [1,1] and the infered bound is
x < 4 — I = 2, an optimal cut.

Unfortunately snake cuts require rewriting the con-
straint in a way that makes interval evaluation less ac-
curate. In our experience snake cuts are most useful in
very large boxes and Newton cuts become more useful
as the boxes get smaller.

2.3 Combination Cuts

The combination cut is used to gain some of the power of
multivariate Newton's method once the search has begun
to converge on a solution. Interval versions of multivari-
ate Newton's method are widely used in interval systems,
e.g., [8, 7]. The Newton cuts we use involve two ideas.
First, we compute combined constraints by inverting the
"center Jacobian" matrix of the constraint system. Sec-
ond, in the combination cuts we use a different method
of interval evaluation called Taylor evaluation which is
more accurate for small boxes.

Like the natural evaluation operator NE, Taylor in-
terval evaluation takes an expression e and a box B and
returns an interval containing the range of values of e
on points in B. Taylor interval evaluation tends to be
more accurate in the case where B is small. To define
the Taylor interval evaluation we first define Bc to be the
center of the box B. i.e., Bc(x) is the interval [c, c] where
c is the center of the interval B(x). We use the notation
Xi G e to indicate that r,- is a variable appearing in the
expression e.

TE(e, B) = NE(e, Bc) + V^ NE(de/dXi, B) * (B(x,:) - Bc(*,))

All arithmetic operations in the above expression are
operations on intervals. Taylor interval evaluation is
more accurate than natural interval evaluation in small
intervals. For example, consider the polynomial x2 - x
where B(x) is the interval [xc - e, xc + e] where xc > \
and e is a small positive number. We have

NE(x2
c-xc, B) = l(x2

c-xc)-(2xc + l)e+e2, (x\ - xc) + (2xc + l)e+ e2]

TE(xi-xc, B) = [ix--ic,-i2xc-l)e+3e- (i£-ic) + (2lc - 1)e + 2«-]

For small values of e the width of the first interval is
approximately 2(2xc + l)e while the width of the second
interval is approximately 2(2a.'c - l)e. Since we have as-
sumed xc > i the first interval is wider than the second.

(If we assume xc < k then the interval product in the
Taylor interval calculation gives a different symbolic an-
swer and the Taylor interval is still smaller.) The natu-
ral evaluation does not take into account the correlations
between the two terms in the polynomial x2 — x. More
generally, if P{x) is a polynomial in x and B(x) is an in-
terval of the form [xc-€, xc + e] then to first order in e we
have that the width of TE(P(x), e) is 2P'(xc)e where P'
is the symbolic derivative of P. P'{xc) is nonzero then as
<r goes to 0 the ratio of the width of TE(P(x), B) to the
width of the true range of values of P{x) approaches 1
— Taylor interval evaluation becomes exactly accurate
in the limit of small intervals. As the above example
shows, this is not true of the natural evaluation.

Combination cuts build new constraints which are lin-
ear combinations of given constraints. If we are given
ei < 0 and ti < 0 then for any positive a and ß we can
infer ae\ + ßti < 0. A combination cut is identical to
a Newton cut except that it uses a constraint derived as
a linear combination of input constraints and uses TE
rather than NE in the computation of s.

Combination Cut: Let x be a variable, B a
box, and [a,b] the interval B(x). Let c and c'
be two additional parameters with c < b and
c' in [c, 6]. Let t\ < 0, e2 < 0, ..., en < 0 be
a set of constraints such that each e; contains
x. Let u be a linear combination aiei+Q2e2 +
.. . + anen where each a; is positive. Let s be
the lower bound of TE(u, B[x := [d, c']]).
We require s > 0. Let [Di, Du] be the in-
terval NE(du/dx, B). To ensure there is no
solution with x £ [c',b] we require that either
Di > 0 or D, < 0 and c' - ^ > b. If Du < 0
we can infer x < c and if Du > 0 we can infer
x < max(c, c' — |f-).

To see the power of the combination cut consider the
two constraints x + y — 2 < 0 and x — y < 0. If both
B(x) and B(y) are the interval [0, 2] then no Newton
or snake cut can be used to improve the bounds — each
constraint is "satisfied at the end points". For example
NE(x + y-2, B[x := [2,2]]) is [0, 2] so x - 2 can not be
ruled out on the basis of this constraint alone. To reduce
the box B we must examine both constraints simulta-
neously. Adding the two constraints together (with unit
coefficients) gives 2x-2 < 0. This immediately gives the
tighter bound x < 1. If we are given the four inequality
constraints representing x + y = 2 and x — y — 0 then
four combination cuts can be used to solve for x and y
exactly. A method for finding appropriate combination
cuts is described in the next section.

3 Branch and Propagate Root Finding

To find a feasible point for a set of inequality constraints,
or a root to a set of equations, one can use a simple

branch and propagate procedure. One starts with a box
large enough to contain all points of interest. One then
reduces the box by applying cuts to derive new bounds.
At some point one may decide to branch. To branch one
selects a variable x. Let [a, b] be the interval B(x) where
B is the box in use at the time of the branch. One then
"splits" the box into the two branches B[x := [a, ä^-]]

and B[x := [^^,6]]- One then recursively computes a
solution inside the first box, or if there is no such solu-
tion, a solution inside the second box. The procedure
terminates when the current box is sufficiently small,
e.g.. every variable is assigned an interval of width less
than, say, 10-8. Newton uses a simple round-robin strat-
egy to select the variable to split — down any branch of
the search tree Newton splits a variable that has gone
the longest time without splitting.

The basic branch and propagate procedure can be
used with a wide variety of heuristics for finding useful
cuts and for determining when to branch. Our experi-
ence with Newton indicates that one useful heuristic is
to only perform cuts that result in at least a 10% re-
duction of an interval. This ensures that the number of
cuts in a single propagation phase is at worst linear in
the number of variables in the constraints. However, this
same heuristic will force the procedure to branch before
all possible cuts have been exhausted. In our experience
such "early branching" is usually desirable.

Now consider selecting the values of c and c' in a cut
on variable x with interval [a, b]. A simple strategy is
to select c to be 6 — ^pr for some non-negative integer n
and to select c' to be the midpoint of [c, 6]. In practice
we need only consider values of n up to 3 since we are
only interested in cuts which reduce the interval by at
least 10%. For a given variable we can start with n — 0
and if that cut fails increase n (up to 3) looking for a
viable cut.

Combination cuts require selecting not only c and c'
but also a linear combination of the constraints. Be-
cause computing appropriate coefficients for the linear
combination can be expensive we suggest performing all
possible Newton and snake cuts before attempting com-
bination cuts. In performing combination cuts we as-
sume that the input is given as a set of equations of the
form e,- = 0. This allows one to compute combined con-
straints of the form ux = 0 where each ux is a linear
combination of the ez- and where uT is intended to con-
strain x independent of the value of other variables. To
compute the combined constraints ux let B be the box
existing at the time we are computing the combined con-
straints. We define the "center Jacobian" matrix [B{.j]
by

Bij = the midpoint of the interval NE(de{/dxj, B).

Assuming that the matrix [Bij] is nonsingular one can
compute [Atj] as of [Bij]. We then define the expression
«r, by

n

uXi = 7^ Aitkek.
k=\

Inside the box B, and especially for reasonably small
boxes, we have that duxJdxj is near 1 if i = j and near

0 otherwise. So ux = 0 is primarilly a constraint on
x. Once the combined constraints of the form ux = 0
have been computed we can perform combination cuts
on this fixed set of combined constraints selecting c and
c' as specified above. In our experience it is best to
perform only a single matrix inversion in any one propa-
gation phase of the procedure — once the coefficients of
the combinations constraints have been computed they
should remain fixed throughout the remainder of that
cutting phase. If the initial box is reasonably small,
propagation relative to a fixed set of combined con-
straints will converge on an exact solution and only a
single matrix inversion is needed. When the heuristics
for selecting cuts fail to find any viable cuts the proce-
dure branches.

The precise details of Newton's procedure for selecting
cuts can be found in [4]. Although these details may be
required to exactly replicate Newton's behavior, it seems
likely that the qualitative performance of the system can
be duplicated using only the heuristics outlined here.

4 Conclusion

This paper describes a branch and propagate algorithm
to find all isolated solutions for a system of polynomial
equations over the reals. Our techniques were originally
inspired by local constraint propagation techniques used
in AI and logic programming. The mathematics behind
our techniques are quite straightforward and far less so-
phisticated than that underlying continuation methods.
Yet our techniques seem to compare well with continua-
tion methods on a wide variety of benchmarks. It seems
possible that branch and propagate techniques provide
the most effective approach to nonlinear root finding just
as they provide the most effective approach to a wide va-
riety of other NP complete problems.

[8] E.R. Hansen and S. Sengupta. Bounding Solutions of
Systems of Equations Using Interval Analysis. BIT,
21:203-211, 1981.

[9] H. Hong and V. Stahl. Safe Starting Regions by Fixed
Points and Tightening. To Appear in Computing, 1995.

[10] K. Meintjes and A.P. Morgan. Chemical Equilibrium
Systems as Numerical test Problems. ACM Transac-
tions on Mathematical Soßware, 16:143-151, 1990.

[11] R.E. Moore and S.T. Jones. Safe Starting Regions for
Iterative Methods. 57.4.1/ Journal on Numerical Analy-
sis, 14:1051-1065, 1977.

[12] J.J. More and M.Y. Cosnard. Numerical Solution of
Nonlinear Equations. ACM Transactions on Mathemat-
ical Software, 5:64-85. 1979.

[13] A.P. Morgan. Computing All Solutions To Polynomial
Systems Using Homotopy Continuation. Appl. Math.
Comput., 24:115-138, 1987.

[14] J Verscheide, P. Verlinden, and R. Cools. Homotopies
Exploiting Newton Polytopes For Solving Sparse Poly-
nomial Systems. SIAM Journal on Numerical Analysis,
31(3):915-930, 1994.

References

[i]

[2]

[3]

[4]

[6]

W. Older and A. Vellino. Extending Prolog with Con-
straint Arithmetics on Real Intervals. In Canadian Con-
ference on Computer & Electrical Engineering, Ottawa,
1990.

F. Benhamou and W. Older. Applying Interval Arith-
metic to Real, Integer and Boolean Constraints. Journal
of Logic Programming, 1995. To Appear.

P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. Logic Programming Series, The MIT
Press. Cambridge, MA, 1989.

P. Van Hentenryck, D. McAllester, and D. Ka-
pur Solving Polynomial Systems using a Branch
and Prune Approach. to appear, SIAM Jour-
nal of Numerical Analysis, also available through
http://www.ai.mit.edu/people/dam/dam.html

R.E. Moore. Interval Analysis. Prentice-Hall, Engle-
wood Cüffs, NJ, 1966.

A.P. Morgan. Solving Polynomial Systems Using
Continuation for Scientific and Engineering Problems.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

E.R. Hansen and R.I. Greenberg. An Interval Newton
Method. Appl. Math. Comput., 12:89-98, 1983.

REPORT DOCUMENTATION PAGE Form Approved

OBMNo. 0704-0188
Public reporting burden for this collection of Information is estimated to average 1 hour per response. Induding the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 222024302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
May 1995

3. REPORT TYPE AND DATES COVERED
memorandum

4. TITLE AND SUBTITLE

Three Cuts for Accelerated Interval Propagation

6. AUTHOR(S)

David A. McAllester, Pascal Van Hentenryck, and Deepak Kapur

5. FUNDING NUMBERS

N00014-91-J-4038,
N00014-91-J-4052,
CCR-9357704

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1542

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSOR
AGENCY F ERÖteJ NUMBER

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED
^S 12b. DISTRIBUTION CODE

Approrad

W STATEMENT K
tor public leieai«

13. ABSTRACT (Maximum 200 words)

This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we
described a system called Newton which finds roots of systems of nonlinear equations using
refinements of interval methods. The refinements are inspired by AI constraint propagation
techniques. Newton is competative with continuation methods on most benchmarks and can handle a
variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which
we believe capture the essential theoretical ideas behind the success of Newton. This paper describes
the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our
work more apparent. Any implementation will need to adopt some heuristic control mechanism.
Heuristic control of the cuts is only briefly discussed here.

14. SUBJECT TERMS
AI, MIT, Artificial Intelligence, root finding, numerical analysis,
constraint propagation, interval methods, intervals, constraints,
logic programming, linear programming, real closed fields

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 754Ö-O1-280-55ÖÖ

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
10

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED
Standard Form 298 (Hev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

DUS QUALITY INSPECTED 8

